Table of contents

Full Length Articles

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multilingual Videos for MOOCs and OER</td>
<td>1–12</td>
</tr>
<tr>
<td>Juan Daniel Valor Miró, Pau Baquero- Arnal, Jorge Civera, Carlos Turró and Alfons Juan</td>
<td></td>
</tr>
<tr>
<td>Duygu Fındık-Coşkunçay, Nurcan Alkış and Sevgi Özkan-Yıldırım</td>
<td></td>
</tr>
<tr>
<td>Instructional Suggestions Supporting Science Learning in Digital Environments Based on a Review of Eye Tracking Studies</td>
<td>28–45</td>
</tr>
<tr>
<td>Fang-Ying Yang, Meng-Jung Tsai, Guo-Li Chiou, Silvia Wen-Yu Lee, Cheng-Chieh Chang and Li-Ling Chen</td>
<td></td>
</tr>
<tr>
<td>High School Students’ Views on the PBL Activities Supported via Flipped Classroom and LEGO Practices</td>
<td>46–61</td>
</tr>
<tr>
<td>Baris Cukurbasi and Mubin Kiyici</td>
<td></td>
</tr>
<tr>
<td>Evolving Learning Paradigms: Re-Setting Baselines and Collection Methods of Information and Communication Technology in Education Statistics</td>
<td>62–73</td>
</tr>
<tr>
<td>David Gibson, Tania Broadley, Jill Downie and Peter Wallet</td>
<td></td>
</tr>
<tr>
<td>Are Games Effective Learning Tools? A Review of Educational Games</td>
<td>74–84</td>
</tr>
<tr>
<td>Sara de Freitas</td>
<td></td>
</tr>
<tr>
<td>Teaching Classical Mechanics Concepts using Visuo-haptic Simulators</td>
<td>85–97</td>
</tr>
<tr>
<td>Luis Neri, Julieta Noguez, Victor Robledo-Rella, David Escobar-Castillejos and Andres Gonzalez-Nucamendi</td>
<td></td>
</tr>
<tr>
<td>The Effects of Representation Tool (Visible-Annotation) Types to Support Knowledge Building in Computer-Supported Collaborative Learning</td>
<td>98–110</td>
</tr>
<tr>
<td>Yoonhee Shin, Dongsik Kim and Jaewon Jung</td>
<td></td>
</tr>
<tr>
<td>Modelling and Simulating Electronics Knowledge: Conceptual Understanding and Learning through Active Agency</td>
<td>111–123</td>
</tr>
<tr>
<td>Adrian Twissell</td>
<td></td>
</tr>
<tr>
<td>Representations of Animal Companions on Student Learning Perception: Static, Animated and Tangible</td>
<td>124–133</td>
</tr>
<tr>
<td>Zhi-Hong Chen and Sheng-Chun Wang</td>
<td></td>
</tr>
</tbody>
</table>

Guest Editorial

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Citizenship: Trends and Research Issues of Learning Analytics and Educational Big Data</td>
<td>134–136</td>
</tr>
<tr>
<td>Gwo-Jen Hwang, Daniel Spikol and Kam-Cheong Li</td>
<td></td>
</tr>
</tbody>
</table>

Special Issue Articles

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Behavior Analysis of a Ubiquitous Situated Reflective Learning System with Application to Life Science and Technology Teaching</td>
<td>137–149</td>
</tr>
<tr>
<td>Wu-Yuin Hwang, Hong-Ren Chen, Nian-Shing Chen, Li-Kai Lin and Jin-Wen Chen</td>
<td></td>
</tr>
<tr>
<td>Learning Analytics for Supporting Seamless Language Learning using E-book with Ubiquitous Learning System</td>
<td>150–163</td>
</tr>
<tr>
<td>Kousuke Mouri, Noriko Uosaki, Hiroaki Ogata</td>
<td></td>
</tr>
<tr>
<td>How Competition in a Game-based Science Learning Environment Influences Students’ Learning Achievement, Flow Experience, and Learning Behavioral Patterns</td>
<td>164–176</td>
</tr>
<tr>
<td>Ching-Huei Chen, Jun-Han Liu and Wen-Chuan Shou</td>
<td></td>
</tr>
<tr>
<td>A Votable Concept Mapping Approach to Promoting Students’ Attentional Behavior: An Analysis of Sequential Behavioral Patterns and Brainwave Data</td>
<td>177–191</td>
</tr>
<tr>
<td>Jerry Chih-Yuan Sun, Gwo-Jen Hwang, Yu-Yan Lin, Shih-Jou Yu, Liu-Cheng Pan and Ariel Yu-Zhen Chen</td>
<td></td>
</tr>
<tr>
<td>Using a Learner-Topic Model for Mining Learner Interests in Open Learning Environments</td>
<td>192–204</td>
</tr>
<tr>
<td>Pengfei Wu, Shengquan Yu and Dan Wang</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Pages</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>A Learning Analytics Approach to Investigating Factors Affecting EFL Students’ Oral Performance in a Flipped Classroom</td>
<td>205–219</td>
</tr>
<tr>
<td>Chi-Jen Lin and Gwo-Jen Hwang</td>
<td></td>
</tr>
<tr>
<td>Applying Learning Analytics for the Early Prediction of Students’ Academic Performance in Blended Learning</td>
<td>220–232</td>
</tr>
<tr>
<td>Owen H.T. Lu, Anna Y.Q. Huang, Jeff C. H. Huang, Albert J. Q. Lin, Hiroaki Ogata and Stephen J. H. Yang</td>
<td></td>
</tr>
<tr>
<td>Personalized Word-Learning based on Technique Feature Analysis and Learning Analytics</td>
<td>233–244</td>
</tr>
<tr>
<td>Di Zou and Haoran Xie</td>
<td></td>
</tr>
<tr>
<td>What Learning Analytics Tells Us: Group Behavior Analysis and Individual Learning Diagnosis based on Long-Term and Large-Scale Data</td>
<td>245–258</td>
</tr>
<tr>
<td>Jia-Hua Zhang, Ye-Xing Zhang, Qin Zou and Sen Huang</td>
<td></td>
</tr>
<tr>
<td>A Comparison between Two Automatic Assessment Approaches for Programming: An Empirical Study on MOOCs</td>
<td>259–272</td>
</tr>
<tr>
<td>Anis Bey, Patrick Jermann and Pierre Dillenbourg</td>
<td></td>
</tr>
<tr>
<td>Learning Analytics at Low Cost: At-risk Student Prediction with Clicker Data and Systematic Proactive Interventions</td>
<td>273–290</td>
</tr>
<tr>
<td>Samuel P. M. Choi, S.S. Lam, Kam Cheong Li and Billy T.M. Wong</td>
<td></td>
</tr>
<tr>
<td>A Peer Coaching-based Professional Development Approach to Improving the Learning Participation and Learning Design Skills of In-Service Teachers</td>
<td>291–304</td>
</tr>
<tr>
<td>Ning Ma, Shuang Xin and Jia-Yuan Du</td>
<td></td>
</tr>
<tr>
<td>Peer Assessment of Webpage Design: Behavioral Sequential Analysis Based on Eye Tracking Evidence</td>
<td>305–321</td>
</tr>
<tr>
<td>Ting-Chia Hsu, Shao-Chen Chang and Nan-Cen, Liu</td>
<td></td>
</tr>
<tr>
<td>Effects of a Progressive Prompting-based Educational Game on Second Graders’ Mathematics Learning Performance and Behavioral Patterns</td>
<td>322–334</td>
</tr>
<tr>
<td>Kai-Hsiang Yang, Hui-Chun Chu and Li-Yu Chiang</td>
<td></td>
</tr>
</tbody>
</table>